An anti-tank or AT mine is a type of land mine designed to damage or destroy vehicles including and armored fighting vehicles.
Compared to anti-personnel mines, anti-tank mines typically have a much larger explosive charge, and a fuze designed to be triggered by vehicles or, in some cases, Remote control or by tampering with the mine.
The Winter War between the Soviet Union and Finland also saw widespread use of anti-tank mines. Finnish forces, facing a general shortage of anti-tank weapons, could exploit the predictable movements of motorized units imposed by difficult terrain and weather conditions.
As one source has it: "Since they were pressure-detonated, these early anti-tank mines typically did most of their damage to a tank's treads, leaving its crew unharmed and its guns still operational but immobilised and vulnerable to aircraft and enemy anti-tank weapons ... During World War II they (the Wehrmacht) began using a mine with a tilt-rod fuze, a thin rod standing approximately two feet up from the center of the charge and nearly impossible to see after the mine had been buried. As a tank passed over the mine, the rod was pushed forward, causing the charge to detonate directly beneath it. The blast often killed the crew and sometimes exploded onboard ammunition. Now that tank crews were directly at risk, they were less likely to plow through a minefield."
Although other measures such as , and bombs designed to magnetically adhere to tanks were developed, they do not fall within the category of as they are not buried and detonated remotely or by pressure. The Hawkins mine was a British anti-tank device that could be employed as a mine laid on the road surface for a tank to run over setting off a crush fuze or thrown at the tank in which case a timer fuze was used.
Shaped charge devices like the Hohl-Sprung mine 4672 were also developed by Germany later in the war, although these did not see widespread use. The most advanced German anti-tank mine of the war was their minimal metal Topfmine. In contrast to the dinner plate mines such as the German Tellermine were bar mines such as the German Riegel mine 43 and Italian B-2 mine. These were long mines designed to increase the probability of a vehicle triggering it, the B-2 consisted of multiple small shaped charge explosive charges along its length designed to ensure a mobility kill against enemy vehicles by destroying their tracks. This form of mine was the inspiration for the British L9 bar mine.
Most modern mine bodies or casings are made of plastic material to avoid easy detection. They feature combinations of pressure or magnetically activated detonators to ensure that they are only triggered by vehicles.
Due to the critical standoff necessary for penetration and the development of standoff neutralization technologies, shaped charge off-route mines using the Munroe effect are more rarely encountered, though the British/French/German ARGES mine with a tandem warhead is an example of one of the more successful.
The term "off-route mine" refers to purpose-designed and manufactured anti-tank mines. Explosively Formed Projectiles (EFPs) are one type of IED that was used in Iraq, but most "home-made" IEDs are not employed in this manner.
There are also several ways of making vehicles resistant to the effects of a mine detonation to reduce the chance of crew injury. In case of a mine's blast effect, this can be done by absorbing the blast energy, deflecting it away from the vehicle hull or increasing the distance between the crew and the points where wheels touch the ground–where any detonations are likely to centre. Another way to protect a vehicle from mines was to attach wooden planks to the sides of armored vehicles to prevent enemy soldiers from attaching magnetic mines. In the close combat on Iwo Jima, for example, some tanks were protected in this manner. A Japanese soldier running up from a concealed foxhole would not be able to stick a magnetic mine on the side of a tank encased in wood.Leckie, Robert, The Battle for Iwo Jima, Random House, New York, copyright 1967, page 142. A simple, and highly effective, technique to protect the occupants of a wheeled vehicle is to fill the tires with water. This will have the effect of absorbing and deflecting the mine's blast energy. Steel plates between the cabin and the wheels can absorb the energy and their effectiveness is enhanced if they can be angled to deflect it away from the cabin. Increasing the distance between the wheels and passenger cabin, as is done on the South African Casspir personnel carrier, is an effective technique, although there are mobility and ease of driving problems with such a vehicle. A V-hull vehicle uses a wedge-shaped passenger cabin, with the thin edge of the wedge downwards, to divert blast energy away from occupants. Improvised measures such as sandbags in the vehicle floor or bulletproof vests placed on the floor may offer a small measure of protection against tiny mines.
Steel plates on the floor and sides and armoured glass will protect the occupants from fragments. Mounting seats from the sides or roof of the vehicle, rather than the floor, will help protect occupants from shocks transmitted through the structure of the vehicle and a four-point seat harness will minimise the chance of injury if the vehicle is flung onto its side or its roof–a mine may throw a vehicle 5 – 10 m from the detonation point. Police and military can use a robot to remove mines from an area.
Furthermore, mobile detachments were tasked with laying more mines directly in the path of advancing enemy tanks. A January 1943 report on Russian anti-tank tactics by the American Intelligence Bulletin attributes the following to an unnamed Soviet intelligence officer: " Each artillery battalion and, in some cases, each artillery battery, had a mobile reserve of 5 to 8 combat engineers equipped with 4 to 5 mines each. Their function was to mine unguarded tank approaches after the direction of the enemy attack had been definitely ascertained. These mines proved highly effective in stopping and even in destroying many enemy tanks."
The Wehrmacht also relied heavily on anti-tank mines to defend the Atlantic Wall, having planted six million mines of all types in Northern France alone. Mines were usually laid in staggered rows about 500 yards (460 meters) deep. Along with the anti-personnel types, there were various model of Tellermines, Topfmines, and Riegel mines. On the Western front, anti-tank mines were responsible for 20-22% of Allied tank losses. Since the majority of these mines were equipped with pressure fuzes (rather than tilt-rods), tanks were more often crippled than destroyed outright.
In the Angolan Civil War or South African Border War that covered vast sparsely populated area of southern Angola and northern Namibia, it was easy for small groups to infiltrate and mine roads, often escaping without ever being detected. The anti-tank mines were most often placed on public roads used by civilian and military vehicles and had a great psychological effect.
Mines were often laid in complex arrangements. One tactic was to lay multiple mines on top of each other to increase the blast effect. Another common tactic was to link together several mines placed within a few metres of each other, so that all would detonate when any one was triggered. It was because of this threat that some of the first successful mine protected vehicles were developed by South African military and police forces. Chief amongst these were the Buffel and Casspir armoured personnel carriers and Ratel IFV armoured fighting vehicle. They employed V-shaped hulls that deflected the blast force away from occupants. In most cases occupants survived anti-tank mine detonations with only minor injuries. The vehicles themselves could often be repaired by replacing the wheels or some drive train components that were designed to be modular and replaceable for exactly this reason.
Most countries involved in military missions deploy modern developments of these vehicles like the RG-31 (Canada, United Arab Emirates, United States) and RG-32 (Sweden).
|
|